

Via Juvarra n. 14 - 10122 TORINO Tel. 011.54.41.26 - *E-mail:* tops020006@pec.istruzione.it - tops020006@istruzione.it *Sito web:* liceovolta.eu - Cod. Fisc. 80091160012 - Cod. Mecc. *TOPS020006*

Anno scolastico 2025/2026

PIANO DI LAVORO

DOCENTE: Taliano Marco

Classe: 5Ds

Disciplina: Fisica

1. OBIETTIVI DIDATTICI

1 a. OBIETTIVI COGNITIVI DELLA DISCIPLINA

Obiettivi educativo-cognitivi generali

L'insegnamento della Fisica, con le altre discipline del curricolo e, in particolare, con quelle di ambito scientifico, si propone di far sì che l'allievo raggiunga, al termine degli studi liceali, i seguenti obiettivi:

- comprensione dei procedimenti caratteristici dell'indagine scientifica, che si articolano in un continuo rapporto tra costruzione teorica e realizzazione degli esperimenti, nonchè capacità di utilizzarli, conoscendo con concreta consapevolezza la natura dei metodi della fisica;
- acquisizione di un corpo organico di contenuti e metodi finalizzati ad una adeguata interpretazione della natura;
- comprensione delle potenzialità e dei limiti delle conoscenze scientifiche;
- acquisizione di un linguaggio corretto e sintetico e della capacità di fornire e ricevere informazioni;
- capacità di analizzare e schematizzare situazioni reali e di affrontare problemi concreti anche in campi al di fuori dello stretto ambito disciplinare;
- abitudine al rispetto dei fatti, al vaglio e alla ricerca di un riscontro obiettivo delle proprie ipotesi interpretative;
- acquisizione di atteggiamenti fondati sulla collaborazione interpersonale e di gruppo;
- acquisizione di strumenti intellettuali che possono essere utilizzati dagli allievi anche per operare scelte successive;
- capacità di "leggere" la realtà tecnologica;
- comprensione del rapporto esistente fra la fisica (e più in generale le scienze della natura) e gli altri ambiti dello scibile umano, in particolare del rapporto fra la fisica e lo sviluppo delle idee, della tecnologia, del sociale.

Obiettivi specifici

Le competenze di base prevedono che l'allievo al termine del triennio dovrà essere in grado di:

- osservare e identificare fenomeni:
- fare esperienza e rendere ragione del significato dei vari aspetti del metodo sperimentale, dove l'esperimento è inteso come interrogazione ragionata dei fenomeni naturali, scelta delle variabili significative, raccolta e analisi critica dei dati e dell'affidabilità di un processo di misura, costruzione e/o validazione di modelli;
- formulare ipotesi esplicative, utilizzando modelli, analogie e leggi;
- formalizzare un problema di fisica e applicare gli strumenti matematici e disciplinari rilevanti per la sua risoluzione:
- comprendere e valutare le scelte scientifiche e tecnologiche che interessano la società in cui vive.

1 b. OBIETTIVI MINIMI DELLA DISCIPLINA

Gli obiettivi minimi sono costituiti dai livelli di apprendimento di conoscenze e abilità che vengono considerati indispensabili per la sufficienza.

- Applicazione dei fondamenti del calcolo infinitesimale ai problemi fisici
- Soddisfacente capacità di calcolo e di elaborazione di semplici problemi inerenti l'elettromagnetismo
- Capacità di esecuzione/elaborazione di semplici esperienze di Laboratorio sugli argomenti trattati
- Acquisizione dei concetti fondamentali di Elettromagnetismo, con particolare riferimento alle equazioni di Maxwell
- Conoscenza dei lineamenti storici e delle problematiche inerenti al superamento della Fisica classica
- Conoscenza dei lineamenti storici della Fisica moderna
- Conoscenza della modellistica atomica e nucleare
- Conoscenza dei lineamenti fondamentali della Relatività ristretta
- Risoluzione di semplici problemi relativi ai contenuti menzionati

Nella seguente tabella si articolano gli obiettivi per unità didattiche:

	rticolano gli obiettivi per unità didattiche:
Unità didattiche	Obiettivi
Corrente continua	Definire l'intensità di corrente elettrica
	Applicare le leggi di Ohm
	Enunciare l'effetto Joule e definire la potenza elettrica
Il campo magnetico	Riconoscere analogie e differenze tra fenomeni elettrici e
	fenomeni magnetici
	• Interpretare le interazioni tra corrente elettrica e campo magnetico
	• Modellizzare sistemi fisici che coinvolgono conduttori rettilinei,
	spire e solenoidi percorsi da corrente, calcolandone le grandezze
	rilevanti
	• Conoscere e comprendere i concetti di flusso e di circuitazione di
	campo magnetico, e applicarli all'analisi di situazioni fisiche
	• Utilizzare la legge di Lorentz nell'analisi di situazioni fisiche
	• Interpretare la natura e l'origine delle proprietà magnetiche dei
	materiali, sulla base di un semplice modello microscopico
	Classificare i materiali secondo le loro proprietà magnetiche
	Evidenziare gli effetti meccanici su una spira e su una bobina
	immerse in un campo magnetico
Induzione elettromagnetica	Analizzare situazioni che riguardano cariche in movimento
e moto delle cariche	all'interno di campi elettrici e magnetici
	• Riconoscere e interpretare le relazioni tra elettricità e magnetismo
	espresse dalle leggi dell'induzione elettromagnetica
	• Definire la forza elettromotrice indotta e indicarne le caratteristiche
	• Formulare la legge di Faraday-Neumann-Lenz, e interpretarla da un
	punto di vista energetico
	Conoscere e comprendere i fenomeni di autoinduzione e mutua
	induzione
	Conoscere i principi di funzionamento dei motori elettrici e dei
	trasformatori
	Derivare l'espressione dell'energia del campo magnetico
	Descrivere struttura e funzionamento di un circuito RL
Correnti alternate; onde	Conoscere i principi di funzionamento degli alternatori
elettromagnetiche	• Analizzare circuiti in AC, introducendo i valori efficaci di tensione
	e corrente
	• Formulare le equazioni di Maxwell in forma integrale nel caso
	generale (non statico)
	Comprendere la formazione dei campi elettrici e magnetici indotti
	• Descrivere la natura e le proprietà fondamentali delle onde e.m.
	• Calcolare energia e quantità di moto trasportate da un'onda e.m.
	Descrivere lo spettro e.m. in termini di frequenze e lunghezze
D 1 (* 10 1 1 1 1 1	d'onda
Relatività ristretta	• Formulare i principi alla base della teoria della relatività ristretta
	Analizzare le conseguenze dei postulati di Einstein: la dilatazione
	dei tempi e la contrazione delle lunghezze
	• Formalizzare le trasformazioni di Lorentz, e saper calcolare in casi
	semplici coordinate spazio-temporali in diversi sistemi di riferimento
	Comprendere ed applicare la legge relativistica di composizione
	delle velocità
	Analizzare l'effetto Doppler per la luce
	• Conoscere le principali grandezze dinamiche in relatività: energia,
	energia cinetica e impulso
	Discutere l'equivalenza massa-energia e le sue principali
T:	conseguenze
Fisica quantistica	Descrivere lo spettro di emissione del corpo nero, tramite la
1 isica quantistica	
i isica quantistica	distribuzione di Planck • Formulare le leggi di Stefan-Boltzmann e di Wien

- Analizzare l'effetto fotoelettrico attraverso l'ipotesi di quantizzazione di Einstein
- Descrivere l'effetto Compton
- Formulare il modello di Bohr dell'atomo di idrogeno, ed utilizzarlo per determinare le orbite e i livelli energetici
- Comprendere l'ipotesi di de Broglie sulla dualità onda-materia
- Formulare il principio di indeterminazione di Heisenberg e comprendere le sue conseguenze sui processi di misurazione
- Comprendere il significato probabilistico della funzione d'onda, soluzione dell'equazione di Schroedinger

2. CONTENUTI

2 a. TESTI IN ADOZIONE

Ugo Amaldi – Il nuovo Amaldi per i licei scientifici.blu, Volume 2, Terza edizione, Zanichelli Editore, Codice ISBN 9788808566683

Ugo Amaldi – *Il nuovo Amaldi per i licei scientifici.blu, Volume 3*, Quarta edizione, Zanichelli Editore, Codice ISBN 9788808527998

2 b. NUMERO DI ORE PREVISTE

Sono previste 99 ore totali

2 c. PROGRAMMAZIONE DISCIPLINARE

0 – Corrente elettrica [trimestre]

- Corrente elettrica
- Prima e seconda legge di Ohm
- Potenza elettrica ed effetto Joule

1 – Il campo magnetico [trimestre]

- Magneti e loro proprietà; campo magnetico e sue linee di campo
- Correnti elettriche e campo magnetico; esperienze di Oersted e Faraday
- Forze magnetiche su correnti e legge di Ampère-Laplace
- Forza di Lorentz
- Flusso e circuitazione del campo magnetico
- Momento magnetico di spira e interazione spira-campo magnetico
- Magnetismo nella materia

2 – Induzione elettromagnetica e moto delle cariche [trimestre]

- Moto di una carica in un campo elettrico e/o magnetico
- Induzione elettromagnetica e corrente indotta
- La legge di Faraday-Neumann-Lenz
- Induttanza e mutua induzione
- I trasformatori
- Energia del campo magnetico
- I circuiti RL

3 – Correnti alternate; onde elettromagnetiche [pentamestre]

- Alternatori e corrente alternata
- Circuiti in AC; corrente e tensione efficaci
- Equazioni di Maxwell nel caso generale (non statico)
- I campi elettrici e magnetici indotti
- Le onde elettromagnetiche; generazione e proprietà
- Energia e quantità di moto di un'onda elettromagnetica
- Lo spettro elettromagnetico

4 – Relatività ristretta [pentamestre]

- Basi sperimentali della relatività ristretta
- Dilatazione dei tempi e contrazione delle lunghezze
- Trasformazioni di Lorentz
- Effetto Doppler relativistico
- Cenni di dinamica relativistica
- Equivalenza massa-energia

5 – Fisica quantistica [pentamestre]

- Corpo nero e ipotesi di Planck
- Effetto fotoelettrico e ipotesi di Einstein
- Effetto Compton
- Spettri atomici; primi modelli atomici
- Il modello di Bohr dell'atomo di idrogeno
- Dualità onda-particella e relazione di de Broglie
- Principio di indeterminazione di Heisenberg
- Interpretazione probabilistica della meccanica quantistica

Nota: in ogni Modulo si proporranno esercitazioni contenenti *Problemi* e *Quesiti* tratti dai Temi d'Esame di Stato degli anni precedenti (Liceo Scientifico-Ordinamento, Liceo Scientifico-Scienze applicate, Liceo Scientifico Tecnologico)

3. METODOLOGIA DIDATTICA E STRUMENTI DI INSEGNAMENTO

3 a. METODOLOGIA

METODOLOGIA UTILIZZATA		EVENTUALI OSSERVAZIONI
Lezione frontale	X	
Lezione dialogata/partecipata	X	
Lavoro di gruppo		
Tecniche di brain storming		
Problem solving	X	
Relazioni		
Discussioni		
Assegnazione letture		
Assegnazione esercizi	X	
Analisi e/o traduzione testi		
Collegamenti interdisciplinari	X	
Tutoring (peer education)		
Cooperative learning	X	
Classe capovolta		
Uso delle TIC	X	(piattaforma Classroom)
Uso di laboratori	X	
Uso di strumenti multimediali	X	
Attività motoria a corpo libero		
Pratica sportiva		
Attività con gli attrezzi		

3 b. STRUMENTI

STRUMENTI UTILIZZATI		EVENTUALI OSSERVAZIONI
Libro di testo	X	
Eserciziario per lavori in classe o a casa		
Testi di approfondimento		
Materiale (anche in formato digitale) fornito dall'insegnante	X	
Presentazioni dell'insegnante		
(PowerPoint, Prezi, ecc.)		
Presentazioni di materiali elaborati		
dagli allievi (PowerPoint, Prezi, ecc.)		
Digital Board	X	
Software didattici	X	(applets online di fisica)
Quotidiani, riviste scientifiche, ecc.		
Sussidi audiovisivi	X	(video didattici disponibili su Internet)
Laboratorio	X	
Visite e uscite didattiche		

4. TIPOLOGIA, FREQUENZA DELLE VERIFICHE E CRITERI DI VALUTAZIONE

4.a TIPOLOGIA E FREQUENZA DELLE VERIFICHE

N. Verifiche trimestre	N. Verifiche pentamestre	Tipologia di prove usate (v. legenda)
2 (minimo)	3 (minimo)	1,8,9,10,11,12

1. verifica orale	9. esercizi	17. relazione
2. testo argomentativo	10. problemi	18. prova strutturata o semistrutturata
3. saggio breve	11. quesiti a risposta aperta	19. prova pratica
4. articolo di giornale	12. quesiti a scelta multipla	
5. tema storico	13. trattazione sintetica	
6. analisi testi	14. prova d'ascolto	
7. traduzione	15. comprensione del testo in lingua	
8. prove di competenza	16. produzione testo in lingua	

4.b. CRITERI DI VALUTAZIONE

Parametri di valutazione

Conoscenze: indicano il risultato della progressiva assimilazione di informazioni attraverso l'apprendimento. Le conoscenze sono l'insieme di fatti, principi, teorie e pratiche, relative a un settore di studio o di lavoro; le conoscenze sono descritte come teoriche e/o pratiche.

Abilità: indicano le capacità di applicare conoscenze e di usare know-how per portare a termine compiti e risolvere problemi; le abilità sono descritte come cognitive (uso del pensiero logico, intuitivo e creativo) e pratiche (che implicano l'abilità manuale e l'uso di metodi, materiali, strumenti).

Competenze: indicano la comprovata capacità di usare conoscenze, abilità e capacità personali, sociali e/o metodologiche, in situazioni di lavoro o di studio e nello sviluppo professionale e/o personale; le competenze sono descritte in termini di responsabilità e autonomia.

voto	conoscenza	abilità/capacità	competenza
2	Nessuna	Incapacità di cogliere qualsiasi forma di suggerimento	Incapacità di comprendere/svolgere qualsiasi tipo di esercizio (consegna del compito in bianco o equivalente) o rifiuto di svolgere la prova o sostenere una interrogazione
3 Assolutamente insufficiente	Nessuna o assente in alcune parti, caratterizzata da gravi e diffuse lacune	Incapacità di affrontare qualsiasi tipo di esercizio, di impostare qualsiasi problema, incapacita di orientamento anche se guidato	Nessun esercizio svolto correttamente, gravi fraintendimenti ed errori nelle applicazioni di metodi e procedure
4 Gravemente insufficiente	Conoscenza frammentaria, caratterizzata da ampie e diffuse lacune	Inadeguate capacità di riflessione e analisi	L'allievo applica metodi e procedure di calcolo con errori, anche se guidato
5 Insufficiente	Parziale e/o superficiale conoscenza e comprensione dei concetti minimi fondamentali	Incertezze e difficoltà nell'analizzare e gestire in modo autonomo problemi ed esercizi, anche noti	Applicazione non sempre autonoma di metodi e procedure e/o affetta da errori.
6 Sufficiente	Conoscenza e comprensione dei concetti "minimi" fondamentali	Interpretazione e gestione del lavoro autonoma, anche se non sempre adeguatamente approfondita e/o priva di incertezze	Applicazione corretta, anche se talvolta insicura di metodi e procedure
7 Discreto	Conoscenza consapevole dei contenuti disciplinari	L'allievo sa interpretare e gestire autonomamente il lavoro; mostra capacità di affrontare problemi anche complessi se guidato	Applicazione corretta e sicura in situazioni ripetitive
8 Buono	Conoscenza completa e sicura	L'allievo coglie implicazioni, analizza e rielabora in modo corretto	Applicazione autonoma di procedure e metodi; esposizione chiara e linguaggio appropriato
9 Ottimo	Conoscenza e comprensione sicure e approfondite	L'allievo sa organizzare il lavoro in modo autonomo e mostra di possedere capacità di analisi e sintesi	Applicazione rapida, sicura, senza errori in situazioni nuove; esposizione rigorosa e ragionata
10 Eccellente	Conoscenza e comprensione sicure, approfondite, organiche	Capacità di analisi e sintesi complete e corrette in situazioni non ripetitive; capacità di fornire ipotesi e valutazioni personali	Applicazione rapida, sicura, senza errori in situazioni nuove; esposizione rigorosa e ragionata. Capacità di proporre soluzioni originali

4.c. VALUTAZIONE FINALE (PTOF)

La valutazione finale è la sintesi di quanto emerso nel corso dell'anno:

- dalle prove scritte e orali, cioè dal livello di conoscenze e competenze acquisite dallo studente, anche rispetto ai risultati della classe;
- dai progressi rispetto alla situazione di partenza e dalla risposta alle azioni di recupero e di potenziamento;
- dall'impegno dimostrato, anche a fronte di eventuali situazioni di criticità quali, ad esempio, motivi di salute;
- dalle capacità di lavoro, sia autonomo che guidato;
- dalla partecipazione alle iniziative promosse dalla scuola e al dialogo educativo;
- dal comportamento dimostrato nei confronti delle persone e degli ambienti.

Si ricorda che il voto finale, al termine dell'anno scolastico, non è la media aritmetica dei voti ottenuti dallo studente in ciascuna materia, ma è l'attribuzione, da parte del Consiglio di classe, del livello raggiunto negli obiettivi disciplinari ed educativi da parte di ciascun allievo.

5. ATTIVITA' DI RECUPERO

MODALITA' UTILIZZATA		EVENTUALI OSSERVAZIONI
Recupero in itinere in ore curricolari	X	
Assegnazione lavoro individualizzato		
Potenziamento		
Settimana di interruzione dell'attività didattica (26-30 gennaio 2026)	X	
Peer tutoring		

6. ATTIVITA' INTERDISCIPLINARI E PROGETTI DIDATTICI

La classe parteciperà, come d'uso in questo Istituto, alla gara di primo livello dei Campionati (ex Olimpiadi) di Fisica, che si terrà nel corso del primo trimestre; tutti gli allievi saranno coinvolti. Sarà proposta agli allievi interessati e maggiormente motivati la partecipazione allo Stage di Fisica, in programma nella primavera del 2026. Ci si riserva in corso d'anno la possibilità di aderire ad ulteriori progetti e iniziative che dovessero essere proposti alla scuola (ad esempio attività per l'orientamento universitario).

Torino, 01/11/2025 Il Docente: Marco Taliano